2023 ew II :

Ditto: Efficient Serverless Analytics
with Elastic Parallelism

Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou,
Gang Huang, Xuanzhe Liu, Xin Jin

unu,%é ati*g

PEKING UNIVERSITY




Serverless computing
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AWS Lambda  Azure Functions Google Cloud Functions Knative

Fine-grained resource elasticity Fine-grained billing
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e Auto-scaling e 1 MB memory granularity
 Concurrency from 1 to 1,000 1 ms time granularity
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Serverless analytics
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Degree of Parallelism: a new problem
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NIMBLE: a data perspective
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Elastic parallelism
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Main idea:

* Match the resource elasticity of serverless computing with parallelism
scheduling in data analytics

* Optimize serverless performance goals directly from a perspective of time




Challenge 1:
Optimal parallelism for arbitrary DAGs

* Accurate prediction of the * Consider data dependencies
execution time under dynamic
parallelism configurations
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Challenge 2:
Coupling of parallelism and placement

Co-optimize parallelism configuration and function placement
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Ditto design outline

Challenge 1: How to find the optimal parallelism for arbitrary DAGs?

* Execution time model = Time under dynamic parallelism
* DoP ratio computing = Optimal parallelism configuration

Challenge 2: How to optimize the coupled parallelism and placement?

* Greedy grouping — Eliminate high data shuffling overhead
* Joint iterative optimization = Co-scheduling



Execution time model: a time perspective

* Long running: 10 to 1000 seconds _
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Execution time model: a time perspective

a
T(s) = . H 3 d: degree of parallelism, DoP
a: the parallelized time parameter
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DoP ratio computing

Intra-path DoP ratio: minimize the sum of the two stages’ execution time
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DoP ratio computing

Inter-path DoP ratio: balance the two stages’ time
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DoP ratio computing

Stage merging: a new stage also conforms to the execution time model

d; : degree of parallelism of stage s; N : total number of functions
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Greedy grouping

e Stage group: stages that should communicate via shared memory

e NP-hard

 Greedy order: group stages with high shuffling overhead
* For JCT optimization, the highest on the critical path first
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Joint iterative optimization

* a will decrease as the I/0O time reduces to zero after grouping

 Model the I/O and compute parts of a separately
* Combine with DoP ratio computing into joint optimization
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Joint iterative optimization

Greedy grouping two stages

m No more stages can be grouped
DoP ratio computing>U >

DoP ratio computing

 Each stage is a group initially

* |n each iteration

 group two stages (or stage groups) with the highest shuffling overhead
* recalculate the new optimal parallelism configuration



Cost optimization

 DoP ratio computing applies serverless cost model

* Function cost: consider the resource usage
e Total cost: the sum of all function costs

* Greedy grouping groups stages with highest shuffling cost first

* Please refer to our paper for more details!



Ditto System

Implement Ditto on top of SPRIGHT (SIGCOMM’ 22)
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Evaluation

* Setup on AWS

* Scheduling: one mé6i.4xlarge server
 Compute: eight m6i.24xlarge servers (96 vCPUs & 384 GB DRAM each)
* Storage: S3 select

count(distinct ws_order_number) as "order count",
sum(ws_ext_ship_cost) as "total shipping cost",

(ws_net_profit) "total net profit"
o TPC—DS frcs):]mw it) as i
web_sales wsl,
° Qll Q16I Q94) Q95 date_dim,

° g—roupby, filter, j Oin customer_address,

web_site
e 1TBdata where
d_date between '1999-4-01'
and (cast('1999-4-01' as date) + 60 days)
and wsl.ws_ship_date_sk = d_date_sk
and wsl.ws_ship_addr_sk = ca_address_sk
and ca_state = 'IA'
and wsl.ws_web _site sk = web_site_sk
and web_company_name = 'pri' 20



JCT (s)

Evaluation
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Ditto reduces the JCT by 1.3-2.5X compared to NIMBLE
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Normalized Cost

Evaluation
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Ditto reduces the cost by 1.2-1.7X compared to NIMBLE
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Evaluation

 Ablation experiment to verify the effectiveness of Ditto
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Evaluation

Performance under Redis
Accuracy of the execution time model
Execution breakdown for TPC-DS Query 95

System overhead of Ditto



Conclusion

* Serverless analytics introduces the elastic parallelism scheduling problem
to optimize serverless performance goals, i.e., JCT and cost

* Ditto co-optimizes parallelism configuration and function placement from
the perspective of time
 Execution time model under dynamic parallelism
 DoP ratio computing to achieve optimal JCT or cost
e Joint iterative optimization for both parallelism and placement

* Ditto reduces up to 2.5X in JCT and up to 1.7X on cost compared to NIMBLE
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