2023 ew II :

Ditto: Efficient Serverless Analytics
with Elastic Parallelism

Chao Jin, Zili Zhang, Xingyu Xiang, Songyun Zou,
Gang Huang, Xuanzhe Liu, Xin Jin

unu,%é ati*g

PEKING UNIVERSITY

Serverless computing

P @ @&

AWS Lambda Azure Functions Google Cloud Functions Knative

Fine-grained resource elasticity Fine-grained billing

A

A

e Auto-scaling e 1 MB memory granularity
 Concurrency from 1 to 1,000 1 ms time granularity

2

Serverless analytics

a .) 4
] Big data & SQL-like query Databricks SQL Serverless
= Locus (NSDI’19) Azure Synapse Analytics
- — NIMBLE (NSDI'21) Google BigQuery
_ , _
Job Execution DAG Serverless functions

N4 N4
Deploy

% Data dependency > W W QW @5 @
[68 éj [8 J Z Job completion time (JCT)

& Cost (Xr,ncc timexmemroy)

Data parallelism

Degree of Parallelism: a new problem

Fine-grained resource elasticity

Enable

~_
Higher DoP {QOOOOOOOJ

Faster, lower JCT

Lower DoP {O Q}

Lower cost

NIMBLE: a data perspective

. . . Caerus: NIMBLE Task Scheduling for [T {
DoP proportional to input data size Serverless Analytics SpQI’ K

2 Optimal JCT
Stage 1 Stage 2 v 15 0 Stage 1
(map) (map) e Stagel O
(s S|
\/ S 10 S
L L FEF @@
E N E ___________ l_ . Stage2.
Stage 3 Stage 2 — Stage 3
(JOIn) I]] Stage 39 E]]
0 10 20 30 20 30 >

Elastic parallelism

: ‘/il,? Data? X R Job completion time (JCT)
..': . u

data Time? &/ % Cost (X fyncs timeXmemroy)

Main idea:

* Match the resource elasticity of serverless computing with parallelism
scheduling in data analytics

* Optimize serverless performance goals directly from a perspective of time

Challenge 1:
Optimal parallelism for arbitrary DAGs

* Accurate prediction of the * Consider data dependencies
execution time under dynamic
parallelism configurations

160 cascade to
% downstream stages
2120
E
§ %
3 40
x
Ll 0 e |
20 40 60 80 100 120 multiple

Degree of Parallelism
upstream stages

Challenge 2:
Coupling of parallelism and placement

Co-optimize parallelism configuration and function placement

-

N

Shared memory A

SPRIGHT (SIGCOMM’22)

Pheromone (NSDI’23) y

@Map Task ®Reduce Task : 1 Shared Memory EJ Remote Storage

Server 1

-~~~ Server 0

|
] |
= ﬁi-@

High DoP with heavy
data shuffle time

CT% :

-~~~ Server0

Low DoP with almost
zero data shuffle time

Ditto design outline

Challenge 1: How to find the optimal parallelism for arbitrary DAGs?

* Execution time model = Time under dynamic parallelism
* DoP ratio computing = Optimal parallelism configuration

Challenge 2: How to optimize the coupled parallelism and placement?

* Greedy grouping — Eliminate high data shuffling overhead
* Joint iterative optimization = Co-scheduling

Execution time model: a time perspective

* Long running: 10 to 1000 seconds _
Data w/ size D

 Datal/O dominates

9! ——— @Data parallelism
8 read
7

X 71
O Bl compute
o Nag I
= 5 write d k D D D
o .) tasks — — —
©
n 3 I d d d
2 |
1

1 1
0 25 50 75 100 125 150 _\];
Time (s) D/d

Time breakdown for TPC-DS Q95 Texec~Tio~ Bandwidth

Execution time model: a time perspective

a
T(s) = . H 3 d: degree of parallelism, DoP
a: the parallelized time parameter
Execution time of /
Stage S Inherent t|me
Parallelized time
[]
a=8 =1 [1]
Parallelized time unit [1] [1]
B Inherent time unit , — q e ?ﬂ
d=2 d = 4 11

DoP ratio computing

Intra-path DoP ratio: minimize the sum of the two stages’ execution time

Parallelized time unit I [Inherent time unit

St
R B =2
A -
»I

Stage s4 J
[aq: Ay = 4 Optimal > dl: dz =2

dl: dz = V1. Ay

12

DoP ratio computing

Inter-path DoP ratio: balance the two stages’ time

Parallelized time unit I [Inherent time unit

{Downstream} -
Stage a; =8 [
/\ []
[]
[]
3—|

a, = 2
Stage s, Stage s, | T —

13

DoP ratio computing

Stage merging: a new stage also conforms to the execution time model

d; : degree of parallelism of stage s; N : total number of functions
Depth
0 [Stage s3] Getdq:d, [Stage s3] Get d,: d; [Stage s:]

O Merge(sy, s5) A @ Merge(sy,s;3)
d4=d1+d2 d5=d3+d4

d5 =N
1 [Stage s4] [Stage s,] - [Stage s,]<
QGEt dl, dz e Get d3, d4

Greedy grouping

e Stage group: stages that should communicate via shared memory

e NP-hard

 Greedy order: group stages with high shuffling overhead
* For JCT optimization, the highest on the critical path first

T_| Stage w/ compute time T

J @ Data dependency w/
shuffling time w

Stage group

Path, Path,
20 20
y w(e)=120 L o
20 20

e5)=100

w(em/w(;)ﬁo
10

Joint iterative optimization

* a will decrease as the I/0O time reduces to zero after grouping

 Model the I/O and compute parts of a separately
* Combine with DoP ratio computing into joint optimization

P
Stage 54 Stage s, J Stage s4 H Stage s, J

\ Grouping > \ \

Read Compute Write Read Compute i

| |
x o
d d .

Joint iterative optimization

Greedy grouping two stages

m No more stages can be grouped
DoP ratio computing>U >

DoP ratio computing

 Each stage is a group initially

* |n each iteration

 group two stages (or stage groups) with the highest shuffling overhead
* recalculate the new optimal parallelism configuration

Cost optimization

 DoP ratio computing applies serverless cost model

* Function cost: consider the resource usage
e Total cost: the sum of all function costs

* Greedy grouping groups stages with highest shuffling cost first

* Please refer to our paper for more details!

Ditto System

Implement Ditto on top of SPRIGHT (SIGCOMM’ 22)

- Control Plane - e Function Servers ... '
- _""'_ Elastic Parallelism Sched = '
User: EEN . .
JCT/cost Greer L DoP Ratioll] :: T Runtime Monitor 5
: ||Grouping| |Computing
15| — 7 T Func. Func.
y N Z 3 A y N
Job (DAG)E Placement Check l Shared Memory l
. T T Data
Resource || ExecTime | | ™
Manager || Predictor [& [@
: : Dat :
Job Profiles ~ j&—; ks

Evaluation

* Setup on AWS

* Scheduling: one mé6i.4xlarge server
 Compute: eight m6i.24xlarge servers (96 vCPUs & 384 GB DRAM each)
* Storage: S3 select

count(distinct ws_order_number) as "order count",
sum(ws_ext_ship_cost) as "total shipping cost",

(ws_net_profit) "total net profit"
o TPC—DS frcs):]mw it) as i
web_sales wsl,
° Qll Q16I Q94) Q95 date_dim,

° g—roupby, filter, j Oin customer_address,

web_site
e 1TBdata where
d_date between '1999-4-01'
and (cast('1999-4-01' as date) + 60 days)
and wsl.ws_ship_date_sk = d_date_sk
and wsl.ws_ship_addr_sk = ca_address_sk
and ca_state = 'IA'
and wsl.ws_web _site sk = web_site_sk
and web_company_name = 'pri' 20

JCT (s)

Evaluation

1000
800

A O
o O
o O

200

Ditto reduces the JCT by 1.3-2.5X compared to NIMBLE

B Ditto Wmm NIMBLE

1000 1000
- 800 8007
- 600" 600"
I 400 4007
FTERNIEFER R EFER N
Q1 Q16 Q94 Q95 0 100% 75% 50% 25% 0Norm-1.0 Norm-0.8 Zipf-0.9 Zipf-0.99

Four queries Different resource usage Different resource distributions

21

Normalized Cost

Evaluation

= N
O O

c o =
o u»u o

Ditto reduces the cost by 1.2-1.7X compared to NIMBLE

Q1 Q16 Q94 Q95

Four queries

B Ditto mmm NIMBLE

2.0
1.5+
1.0t
d il
0.0%00% 75% 50% 25%

Different resource usage

2.0

1.5

1.0f
O.5k I I I I
0.0 o e e N Tt N OO

Norm-1.0 Norm-0.8 Zipf-0.9 Zipf-0.99

Different resource distributions

22

Evaluation

 Ablation experiment to verify the effectiveness of Ditto

B NIMBLE ®m NIMBLE+Group W NIMBLE+DoP mE Ditto
2.0

2
S1.5/

e
)

N1.0r
©

0.5

Z

"1 a6 Q¢ a95 %0 g1 Q16 Qo4 Q95

Evaluation

Performance under Redis
Accuracy of the execution time model
Execution breakdown for TPC-DS Query 95

System overhead of Ditto

Conclusion

* Serverless analytics introduces the elastic parallelism scheduling problem
to optimize serverless performance goals, i.e., JCT and cost

* Ditto co-optimizes parallelism configuration and function placement from
the perspective of time
 Execution time model under dynamic parallelism
 DoP ratio computing to achieve optimal JCT or cost
e Joint iterative optimization for both parallelism and placement

* Ditto reduces up to 2.5X in JCT and up to 1.7X on cost compared to NIMBLE

Tha N k yOU ' M chaojin@pku.edu.cn

