

Fast, Approximate Vector Queries on Very Large Unstructured Datasets

Zili Zhang, Chao Jin, Linpeng Tang, Xuanzhe Liu, Xin Jin

➤ What is Vector Search?

➤ What is Vector Search?

Top-1 Nearest Neighbor

Vector Search in Real-World Applications

Exact K-NN search

high query latency

Deep Learning model

approximate result

Approximate Vector Search

Approximate Vector Search

Inverted File Index (IVF)

partition the dataset into several clusters

Approximate Vector Search

Inverted File Index (IVF)

> search in the top-n clusters

Approximate Vector Search

Inverted File Index

top-n decides the query latency and accuracy

Bounded Performance

Bounded Performance

- > Time bound
- > Error bound

Bounded Performance

Auncel

> The first distributed vector search engine that provides bounded performance

Faiss

sample some queries to process vector search

map the error bound to the corresponding top-n

Key: error bound **Value**: Top-n

Faiss limitations

different queries require different values of Top-n

the worst case dominates the performance

Figure 2: Redundant computation in Faiss.

query-agnostic

LAET

- use a gradient boosting decision tree to predict top-n for different queries
- > the model is in-accurate and includes a multiplier to guarantee the bound

LAET Limitations

the inaccurate model needs a very large multiplier

including a complex model introduces large overhead

worst case multiplier

Figure 3: Redundant computation in LAET.

black-box fitting

Auncel

terminates the query if the error bound is satisfied

leverages high-dimensional geometry to profile the error

Auncel Profile

> the error is calculated as

$$1 - \frac{N(P_1)}{top-k}$$

after processing cluster-1

$$ightharpoonup N(P_i) \approx V(P_i)$$

Bounded Performance: Time Bound

Auncel

> error decreases over time

- \succ terminate the query when $t_{used} + t_{next\ cluster} \ge time\ budget$
- $\succ t_{next\ cluster}$ is profiler from search history

Bounded Performance : Distributed Settings

Error Amplification

sharding the dataset into a number of nodes

the error is amplified and violates the given error bound

Bounded Performance : Distributed Settings

Auncel solution: error calibration

 \succ reduce the error by $\frac{1}{top-k}$ each time until the global error bound is guaranteed

Evaluation: Set up

- > Implementation
 - > ~3000 LoC C++
 - > Faiss
- > Testbed
 - > AWS c5.4xlarge (single node)
 - Four c5.metal (distributed settings)
- Datasets
 - Images: Sift, Gist, Deep (with one billion of items)
 - > Text: Text-to-Images

Evaluation: End-to-end Latency

Lower Latency

- $\sim 3 \times$ lower query latency on average than baseline systems
- > Outperform baselines under different datasets, error bounds and top-k values

Evaluation: Effectiveness

Effectiveness

> Adapts to different error bounds

Evaluation: Effectiveness

Effectiveness

Adapts to different time bounds

Evaluation: Scalability

Scale Ideally

> latency is reduced by half when the number of worker is doubled

Evaluation: More experiments

- > Validation of the mathematical formulation
- > Validation of local unformal distribution
- > Runtime profile overhead
- System building time
- **>** ...

Conclusion

- > Auncel: a fast, approximate vector query engine on very large unstructured datasets
 - propose white box and query aware error-latency-profile to guarantee bounded performance
 - > apply probability theory to calibrate error bounds and scale to multiple workers ideally

