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Vector Search

» Vector Search in Real-World Applications
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Vector Search

Exact K-NN search Deep Learning model
»> high query latency » approximate result
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Approximate Vector Search



Approximate Vector Search

Inverted File Index (IVF)
» partition the dataset into
several clusters




Approximate Vector Search

Inverted File Index (IVF)
» search in the top-n clusters




Approximate Vector Search

Inverted File Index
» top-n decides the query latency and accuracy
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Bounded Performance
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Bounded Performance

Auncel

» The first distributed vector search engine that provides bounded performance



Bounded Performance : Error Bound

Faiss Key: error bound Value: Top-n
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Bounded Performance : Error Bound
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Figure 2: Redundant computation in Faiss.



Bounded Performance : Error Bound

LAET
» use a gradient boosting decision tree
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Bounded Performance : Error Bound

worst Case multiplier
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Bounded Performance : Error Bound

Intermediate Result S;
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Bounded Performance : Error Bound

Auncel Profile
» the error is calculated as

N(P,)
top—k

after processing cluster-1

> N(P;) = V(P;)




Bounded Performance : Time Bound

Auncel

> error decreases over time

» terminate the query when t,coq + thext cluster = time budget

» tnext cluster 1S Profiler from search history



Bounded Performance : Distributed Settings

Error Amplification

» sharding the dataset into a Data 1
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Bounded Performance : Distributed Settings

Auncel solution: error calibration

» reduce the error by each time until the global error bound is guaranteed
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Evaluation: Set up

» Implementation
» ~3000 LoC C++
> Faiss

» Testbed
» AWS c5.4xlarge (single node)
» Four cb.metal (distributed settings)

» Datasets
» Images: Sift, Gist, Deep (with one billion of items)
» Text: Text-to-Images



Evaluation: End-to-end Latency
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Lower Latency

» ~3x lower query latency on average than baseline systems
» QOutperform baselines under different datasets, error bounds and top-k values




Evaluation: Effectiveness

Actual Error (%)
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» Adapts to different error bounds
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Evaluation: Effectiveness
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Effectiveness
» Adapts to different time bounds



Evaluation: Scalability
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Scale Ideally

» latency is reduced by half when the number of worker is doubled



Evaluation: More experiments

» Validation of the mathematical formulation
» Validation of local unformal distribution

» Runtime profile overhead

» System building time

> ...



Conclusion

» Auncel: a fast, approximate vector query engine on very large unstructured datasets

» propose white box and query aware error-latency-profile to guarantee bounded performance

» apply probability theory to calibrate error bounds and scale to multiple workers ideally
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